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Creation and annihilation of intrinsic localized excitations
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Creation and annihilation of intrinsic localized excitations in a nonintegrable discrete one-dimensional
nonlinear Schrdinger system is studied numerically. We demonstrate that the distribpitionof the ampli-
tudesx of the created excitations has the foptx) =x“exp(Bx*). The log-normal formy=2 has previously
been found in non-Hamiltonian continuous systef8d.063-651X%98)50107-9

PACS numbsg(s): 03.40.Kf, 63.20.Pw

An important and longstanding problem in nonlinear sci-nonlinear Schrdinger equatiofi24—26. These equations are
ence is the existence and dynamics of intrinsic localized exnecessarily nonintegrable, and they are also dissipative and,
citations, that have broad physical significance in plasmagherefore, non-Hamiltonian. Initializing the systems in either
fluids, optics, biomolecular systeni], etc. It is also ex- @ uniform state or a uniformly distributed random state leads
pected that intrinsic localized excitations play an important0 localized excitations forming and annihilating in a nonpe-
role in the dynamics of anharmonic crystd®. Rigorous riodic sequence. Analytical explanations of these observed
examples of self-localized states are provided by solitons ifPhenomena in numg‘rlcql S|mulgt|o’|?s have been promoted in
completely integrable systems and are well understood byarious forms of a “soliton-lattice” mode[23,21, which
now[3,4]. The dynamics of these examples is simple in tha[gund on thg superposition of randomly positioned exact SO|I.-
the localized excitationésolitong do not interact within the ~©ON excitations. Such models appear to work well when soli-

nonlinear spectral space defined by the inverse scatteringnS are available and when they are allowed to move freely

transform. Also, the soliton spectra are separated from spe the system. A_n interesting common feature. of these con-
inuum systems is that the distribution of certain characteris-

tra arising from other excitation®.g., radiation As a con- . . . ;
seguence, soliton creation and annihilation is at most a rei—'cS (such as amplitud¢24], width, or mutual separation

currence process in integrable systems. In realistic physic Fei]\a,lgf tr:]gr#?;ﬂzrerg excitations in all cases studied, has a
modﬁls,_ colmplete mtegrabrllllty |sdalmost alwayj_ absept, dlgé' In thge present wdrk we perform a detailed numerical
to physical properties such as discreteness, dimensionalit . L . o !

disorder, and fluctuationg—7]. Consequently, the creation %tudy of creation and annihilation of localized excitations in

and annihilation process of localized excitations become discrete nonintegrable npnllnear Sdlinger (DNLS) sys-
much more complicated physically and less understoo m. In contrast to the studies noted above, the DNLS system

mathematically is a discretetHamiltoniansystem. The existence and stability
It is becomiﬁg apparent that discrete intrinsic Iocalizedand several other aspects of intrinsic localized excitations

excitations do not require integrability for either existence orr'\l/lavle.li)een cla?ﬁgd [L1155|]rlg mv(;arst(?] scattering ttrar}sfﬁ‘ilm],t.
stability [8,9]. This physically important observation has re- elnikov  analysis »an € goncept ot ant-

cently been established rigorously via, e.g., an application Olptegrablllty” [17]. The importance of the DNLS system, as

the implicit functions theoreri10—13. A multitude of as- one of the most widely studied discrete nonlinear systems,

pects of the dynamics of intrinsic localized excitations hasStems hot only from its applicability in diverse physical situ-

: . ; iR ations but also from its simple, yet rich, mathematical struc-
been explored using approximate anglyncal meth ture. It is worth mentioning that the dynamics of the DNLS
15] and well-founded numerical techniqugks]. Also, full

dynamical simulations have illustrated the dynamical behavSYStem exhibits a nphnes_s that the system in its |n'tegrable
ior of such excitationg17,18. However, the main area of vers_lon_does_ nqt, either In _the dlsprete vgrs_(@(blownz-
research on intrinsic localized excitations has considered th'ea(\j/{/k d|fc(;etltzr]at|or[3]()]|_or In |_ts C?rg'plligm I|m|';:

behavior of single discrete localized excitations and only a € study the one-dimensiona equation

few works have been concerned with their interaction - 2,
[19,20, and even less research has been devoted to the cre- ot (Ynsrt o)+ 20[40| 40 =0, @)
ation and possible annihilation of discrete localized excitayypere the overdot denotes the time derivatineis a site

tions. Addressing such issues is an important step towardggex, andw is a tunable coefficient to the nonlinear term.
understanding the role played by intrinsic localized states INsing the standard Poisson brackets

nonergodic and nonequilibrium properties in real physical

contexts. {¥n. 3} =16am, 2
Previous studies of creation and annihilation of solitonlike
states have been conducted mainly in continuous systems {Yn Ymp={ 45} =0, ®)

such as the Kuramoto-Sivashinski equafiah,22, complex
Ginzburg-Landau equatidr23], and the damped and driven Eg. (1) becomes the equation of motion,
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FIG. 1. Spatiotemporal contour imagé/f|) of a small part
(101 sites of the periodic chain. Parameters ave= 2000, v= 10,
and the system size is 28.0° sites.

FIG. 2. Distribution of amplitudes of intrinsic localized excita-
tions. Squares indicate numerically obtained data, the solid line in-
dicates least-squares fit | Eq. (7), and the dashed line indicates
least-squares fit tp, Eq. (8). System parameters are the same as in
. Fig. 1.
¢n:{Hv¢n}i (4)

where is the Hamiltonian given by systems, causes the annihilation process. It is evident that
there is very little direct interaction between the various lo-
H=—2 (Pt 1+ U ¢n+1)_V2 | n| . (5) calized excitations, contrary to what has been observed in
n n similar cases for continuous equatiois,24,21. The rea-
son for this is that the emerging excitations are localized

In addition to the conserved energy; the quantity within only a couple of sites and, therefore, the probability
that any two excitations are close is low. Also, the individual
/\/’:2 [ nl? (6) excitations are very unlikely to move because narrow exci-

n

tations are more strongly pinned by the lattice discreteness
[29,30. Therefore, all interaction arises almost entirely from

the small amplitude background excitations. Since the local-
ized structures are created and annihilated in a seemingly

. . Stochastic mannelthough it is worth noting that the posi-
appropriate accuracy of the numerical fourth-order Rungejions of the structures show some regularity in the way the

Kutta scheme that we used to simulate the system. The Syg:eation of high amplitude excitations is confined to certain

tem (Il) p(l)_ss(ejsses, as exr?ct sglunons, a class of %Xath INtrhagions of the lattice the appropriate way to characterize the
sic loca 'Z_e states that however, cannot be foun ystem is in terms of the distributions of suitable character-
analytically; their existence and stability can be analyticallyigiic teatures. Figure 2 shows the distribution of the ampli-

proven in various way$10,15,17 and they can be found y,4e of the localized excitations that are created after a long
time (see below The squares in Fig. 2 show the numerically

numerically to a high degree of accurddp,17).
A numerical experiment of E¢1) was performed on a obtained distribution of the excitation amplitudes, while
the solid line is the distribution function

lattice consisting of 2.5 10° sites. As initial states every site
is assigned a random real value uniformly distributed in the
interval [—.v,v], whereq is chose_n_ to give a totalV’ P1(X)=praXxtexp — B1X), (7
=2000. Finally, the nonlinear coefficient was chosen to be
v=10. The large system size is chosen in order to obtaimnd the dashed line is the distribution function
reliable statistics while still being able to control the con-
served quantitie${ and \. P2(X) = PanX*2eXp( — B2X7), 8

Figure 1 shows the spatial-temporal contour image of a -
small part of the system as it evolves. Clearly, some coherer’(i’he(reJrl)“i and B; are fitting paEargtleters, P1n

.. . K K _ plag _ ap+1)2

structures emerge, indicating a dynamical creation and anni=8; * “/T'[(e;+1)],  and  p;n=28, IT[ (a2
hilation process. The mechanism behind this creation and-1)/2]; the two latter are normalization constants. The fits
annihilation process is the modulation instabili8] which  are shown for a;=2.3, B,=208.7, and a,=1.2, B,
allows creation of localized structures. In the present case it 3810.0. Both sets of parameters are found from a least-
is an extremely complex process, since the random initiabquares fit to the numerical data. It is clear from Fig. 2 that
conditions, in a sense, contains all possible modulational frethe fit of p, is excellent, while the distributiop, fails to fit
guencies. This, combined with the persistent noisy backthe slowly decreasing tail. To ensure that the distribution is
ground caused by the discreteness and nonintegrability of thetationary, we fifp, to the numerically found distribution in

is also conserved under the dynamics of @g.and serves as
the norm of the system. The quantitiés and NV were fre-
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26 . , ' Consideringx as a stochastic variable governed by a sto-
chastic differential equation, it is possii@4], via a Fokker-
Planck equation, to determine the appropriate equation yield-
o ing the distributionp,,
x=ax—bx2+ e(t)x, (10)
2'20 1 dOO 20I00 3600 4000 where
Time [t]
. (e(t))=0 and (e(t)e(t’))=Ds(t—t’). 11
215
] The relation between the parametets B, anda, b, andD
B 2101 " IS
) a=2a/D-1
205¢
s : : and
0 1000 2000 3000 4000
Time [t] B=2b/D. (12

FIG. 3. Evolution of the fitting parametets, and 8, defined in ~ The apparent way to explain the appearance of a multiplica-
Eg. (7). Systems parameters are the same as in Fig. 1. tive stochastic terme(t) in Eq. (10) is to ascribe it to the
spatial diffusion and fluctuating background created by the
time intervals of length 100 time units and show the resulting™©Ving small amplitude excitationgadiation and low am-
a, and B, versus timet in Fig. 3. From Fig. 3 we clearly plitude local exc!tanon)s There is, howgver, na priori rea-
observe that the distribution is indeed stationary since therg®" why the noise shoqld be'w'h|te; indeed, the remaining
is no time dependence of the fitting parameters except forery small but systematic deviation from log-normal distri-

small fluctuations. The quality of the fit is the same over the?ution in the tail regiorisee Fig. 2may indicate some color.

entire time interval. In order to test the results further wef '0M the numerics we know thatis intrinsic to the system

have performed other similar simulations of the system,'” that it is unchanged when the parameters of the system are
varying \ between\'=2000 and\/=10 000, and the same changed, indicating that thee and the noise variande are
overall behavior was found, namely, that the distributign intrinsic to the system. So, starting from a random state, the

is able to fit the numerical data well with the same value ofSYStem generates a stochastic background with a specific
a, but with 8 changing proportionally toV. A few longer strength. Furthermore, we know thatis proportional taV,
simulations {~100 000) on smaller systents-1000 sitey indicating that the ternbx? arises from the nonlinearity of

were done to ensure that the distribution is not changing oﬁhe system. L : .
an extremely slow time scale, and this was found not to be, 1€ nonlinear stochastic differential equati® can also

the case. describe a bimolecular chemical reacti@#]. In this con-

As is well known[28] spatially uniform initial conditions nection it is interesting to obserye that a S|m|Ia2r trimolecular
with small modulations will, due to the modulational insta- '€action would lead to Eq9) with the termbx" replaced
bility, cause certain modes to dominate the initial dynamicgVith bX*, which in turn leads to the distributiop,. As we
of the system. However, the three-wave mixing of the non{13Vé Seerp, approximates the numerical data much worse
linear term produces all frequency components in the longthan P It is difficult to interpret this fact in detail in our
time dynamics and a behavior similar to what is reportedcONtext, but it suggests that the distribution is a result of the
here may occur. coexisting interaction of intrinsic localized excitations and

Since the initial condition is real, the phasef is ini- ~ radiation via the nonlinear term in E(). .
tially zero or . The distribution of the phase was observed N conclusion, we have numerically studied creation and
to change smoothly into a completely uniform distribution annihilation of intrinsic localized excitations in a noninte-

between 0 and 2 The uniform distribution is reached after 9rable Hamiltonian system, starting from a random initial
a relatively short time t~300). condition. The observed continuous creation and annihilation

Another interesting question is what the effect of integra-Process results i_n a characteristic near—log-normal distribu-
bility on the observed behavior is. The DNLS system istion of the amplitudes of the localized states. We further
“close” to being integrable in the sense that it becomes in-
tegrable in the continuum limit. One way to remove this
feature is to change Eql) to

observed that the phenomena can be described by a nonlinear
stochastic differential equation with multiplicative white
noise. In contrast to other studies, the system studied in the
present paper is Hamiltonian, without any external perturba-
tions. The system is, however, nonintegrable and conse-
i nt (Pns1+ Un1)+ 20| | ?7 ¢ =0, (99 quently possesses a finite number conserved quantities. An
integrable system would have exhibited recurring behavior
) ) under the applied conditions. The prevalence of near-log-
whereo is a parameter different from=1. The system9)  orma) distributions in nonlinear, nonintegrable systems is

is itself an interesting system and is well studl@1-33. i norant for characterizing mesoscale complexity, and evi-
Performing similar simulations in this system, we found fordently is worthy of further study and analysis.

o=2 no change in the distribution, as compared to the sys-
tem wheres=1. This work was performed under the auspices of the DOE.
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