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Creation and annihilation of intrinsic localized excitations
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Creation and annihilation of intrinsic localized excitations in a nonintegrable discrete one-dimensional
nonlinear Schro¨dinger system is studied numerically. We demonstrate that the distributionp(x) of the ampli-
tudesx of the created excitations has the formp(x)5xaexp(bxg). The log-normal formg52 has previously
been found in non-Hamiltonian continuous systems.@S1063-651X~98!50107-9#

PACS number~s!: 03.40.Kf, 63.20.Pw
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An important and longstanding problem in nonlinear s
ence is the existence and dynamics of intrinsic localized
citations, that have broad physical significance in plasm
fluids, optics, biomolecular systems@1#, etc. It is also ex-
pected that intrinsic localized excitations play an import
role in the dynamics of anharmonic crystals@2#. Rigorous
examples of self-localized states are provided by soliton
completely integrable systems and are well understood
now @3,4#. The dynamics of these examples is simple in t
the localized excitations~solitons! do not interact within the
nonlinear spectral space defined by the inverse scatte
transform. Also, the soliton spectra are separated from s
tra arising from other excitations~e.g., radiation!. As a con-
sequence, soliton creation and annihilation is at most a
currence process in integrable systems. In realistic phys
models, complete integrability is almost always absent,
to physical properties such as discreteness, dimensiona
disorder, and fluctuations@5–7#. Consequently, the creatio
and annihilation process of localized excitations becom
much more complicated physically and less underst
mathematically.

It is becoming apparent that discrete intrinsic localiz
excitations do not require integrability for either existence
stability @8,9#. This physically important observation has r
cently been established rigorously via, e.g., an applicatio
the implicit functions theorem@10–12#. A multitude of as-
pects of the dynamics of intrinsic localized excitations h
been explored using approximate analytical methods@13–
15# and well-founded numerical techniques@16#. Also, full
dynamical simulations have illustrated the dynamical beh
ior of such excitations@17,18#. However, the main area o
research on intrinsic localized excitations has considered
behavior of single discrete localized excitations and onl
few works have been concerned with their interact
@19,20#, and even less research has been devoted to the
ation and possible annihilation of discrete localized exc
tions. Addressing such issues is an important step tow
understanding the role played by intrinsic localized state
nonergodic and nonequilibrium properties in real physi
contexts.

Previous studies of creation and annihilation of solitonl
states have been conducted mainly in continuous syst
such as the Kuramoto-Sivashinski equation@21,22#, complex
Ginzburg-Landau equation@23#, and the damped and drive
PRE 581063-651X/98/58~1!/40~4!/$15.00
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nonlinear Schro¨dinger equation@24–26#. These equations ar
necessarily nonintegrable, and they are also dissipative
therefore, non-Hamiltonian. Initializing the systems in eith
a uniform state or a uniformly distributed random state lea
to localized excitations forming and annihilating in a nonp
riodic sequence. Analytical explanations of these obser
phenomena in numerical simulations have been promote
various forms of a ‘‘soliton-lattice’’ model@23,21#, which
build on the superposition of randomly positioned exact s
ton excitations. Such models appear to work well when s
tons are available and when they are allowed to move fre
in the system. An interesting common feature of these c
tinuum systems is that the distribution of certain characte
tics ~such as amplitude@24#, width, or mutual separation
@23#!, of the localized excitations in all cases studied, ha
near-log-normal form.

In the present work, we perform a detailed numeric
study of creation and annihilation of localized excitations
a discrete nonintegrable nonlinear Schro¨dinger ~DNLS! sys-
tem. In contrast to the studies noted above, the DNLS sys
is a discreteHamiltoniansystem. The existence and stabili
and several other aspects of intrinsic localized excitati
have been clarified using inverse scattering transform@27#,
Melnikov analysis @15#, and the concept of ‘‘anti-
integrability’’ @17#. The importance of the DNLS system, a
one of the most widely studied discrete nonlinear syste
stems not only from its applicability in diverse physical sit
ations but also from its simple, yet rich, mathematical str
ture. It is worth mentioning that the dynamics of the DNL
system exhibits a richness that the system in its integra
version does not, either in the discrete version~Ablowitz-
Ladik discretization@3#! or in its continuum limit.

We study the one-dimensional DNLS equation

i ċn1~cn111cn21!12nucnu2cn50, ~1!

where the overdot denotes the time derivative,n is a site
index, andn is a tunable coefficient to the nonlinear term
Using the standard Poisson brackets

$cn ,cn* %5 idnm , ~2!

$cn ,cm%5$cn* ,cm* %50, ~3!

Eq. ~1! becomes the equation of motion,
R40 © 1998 The American Physical Society
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ċn5$H,cn%, ~4!

whereH is the Hamiltonian given by

H52(
n

~cncn11* 1cn* cn11!2n(
n

ucnu4. ~5!

In addition to the conserved energyH, the quantity

N5(
n

ucnu2 ~6!

is also conserved under the dynamics of Eq.~1! and serves as
the norm of the system. The quantitiesH andN were fre-
quently monitored during the numerical simulation to ens
appropriate accuracy of the numerical fourth-order Run
Kutta scheme that we used to simulate the system. The
tem ~1! possesses, as exact solutions, a class of exact in
sic localized states that however, cannot be fou
analytically; their existence and stability can be analytica
proven in various ways@10,15,17# and they can be found
numerically to a high degree of accuracy@15,17#.

A numerical experiment of Eq.~1! was performed on a
lattice consisting of 2.53105 sites. As initial states every sit
is assigned a random real value uniformly distributed in
interval @2v,v#, where v is chosen to give a totalN
52000. Finally, the nonlinear coefficient was chosen to
n510. The large system size is chosen in order to ob
reliable statistics while still being able to control the co
served quantitiesH andN.

Figure 1 shows the spatial-temporal contour image o
small part of the system as it evolves. Clearly, some cohe
structures emerge, indicating a dynamical creation and a
hilation process. The mechanism behind this creation
annihilation process is the modulation instability@28# which
allows creation of localized structures. In the present cas
is an extremely complex process, since the random in
conditions, in a sense, contains all possible modulational
quencies. This, combined with the persistent noisy ba
ground caused by the discreteness and nonintegrability o

FIG. 1. Spatiotemporal contour image (ucnu) of a small part
~101 sites! of the periodic chain. Parameters areN52000, n510,
and the system size is 2.53105 sites.
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systems, causes the annihilation process. It is evident
there is very little direct interaction between the various
calized excitations, contrary to what has been observed
similar cases for continuous equations@23,24,21#. The rea-
son for this is that the emerging excitations are localiz
within only a couple of sites and, therefore, the probabil
that any two excitations are close is low. Also, the individu
excitations are very unlikely to move because narrow ex
tations are more strongly pinned by the lattice discreten
@29,30#. Therefore, all interaction arises almost entirely fro
the small amplitude background excitations. Since the loc
ized structures are created and annihilated in a seemi
stochastic manner~although it is worth noting that the pos
tions of the structures show some regularity in the way
creation of high amplitude excitations is confined to cert
regions of the lattice!, the appropriate way to characterize th
system is in terms of the distributions of suitable charac
istic features. Figure 2 shows the distribution of the amp
tude of the localized excitations that are created after a l
time ~see below!. The squares in Fig. 2 show the numerica
obtained distribution of the excitation amplitudes,x, while
the solid line is the distribution function

p1~x!5p1nxa1exp~2b1x!, ~7!

and the dashed line is the distribution function

p2~x!5p2nxa2exp~2b2x2!, ~8!

where a i and b i are fitting parameters, p1n

5b1
(a111)/G@(a111)#, and p2n52b2

(a211)/2/G@(a2

11)/2#; the two latter are normalization constants. The fi
are shown for a152.3, b15208.7, and a251.2, b2
53810.0. Both sets of parameters are found from a le
squares fit to the numerical data. It is clear from Fig. 2 t
the fit of p1 is excellent, while the distributionp2 fails to fit
the slowly decreasing tail. To ensure that the distribution
stationary, we fitp1 to the numerically found distribution in

FIG. 2. Distribution of amplitudes of intrinsic localized excita
tions. Squares indicate numerically obtained data, the solid line
dicates least-squares fit top1 Eq. ~7!, and the dashed line indicate
least-squares fit top2 Eq. ~8!. System parameters are the same as
Fig. 1.
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time intervals of length 100 time units and show the result
a1 and b1 versus timet in Fig. 3. From Fig. 3 we clearly
observe that the distribution is indeed stationary since th
is no time dependence of the fitting parameters except
small fluctuations. The quality of the fit is the same over
entire time interval. In order to test the results further
have performed other similar simulations of the syste
varyingN betweenN52000 andN510 000, and the sam
overall behavior was found, namely, that the distributionp1
is able to fit the numerical data well with the same value
a, but with b changing proportionally toN. A few longer
simulations (t;100 000) on smaller systems~;1000 sites!
were done to ensure that the distribution is not changing
an extremely slow time scale, and this was found not to
the case.

As is well known@28# spatially uniform initial conditions
with small modulations will, due to the modulational inst
bility, cause certain modes to dominate the initial dynam
of the system. However, the three-wave mixing of the n
linear term produces all frequency components in the lo
time dynamics and a behavior similar to what is repor
here may occur.

Since the initial condition is real, the phase ofcn is ini-
tially zero orp. The distribution of the phase was observ
to change smoothly into a completely uniform distributi
between 0 and 2p. The uniform distribution is reached afte
a relatively short time (t;300).

Another interesting question is what the effect of integ
bility on the observed behavior is. The DNLS system
‘‘close’’ to being integrable in the sense that it becomes
tegrable in the continuum limit. One way to remove th
feature is to change Eq.~1! to

i ċn1~cn111cn21!12nucnu2scn50, ~9!

wheres is a parameter different froms51. The system~9!
is itself an interesting system and is well studied@31–33#.
Performing similar simulations in this system, we found f
s52 no change in the distribution, as compared to the s
tem wheres51.

FIG. 3. Evolution of the fitting parametersa1 andb1 defined in
Eq. ~7!. Systems parameters are the same as in Fig. 1.
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Consideringx as a stochastic variable governed by a s
chastic differential equation, it is possible@34#, via a Fokker-
Planck equation, to determine the appropriate equation yi
ing the distributionp1 ,

ẋ5ax2bx21e~ t !x, ~10!

where

^e~ t !&50 and ^e~ t !e~ t8!&5Dd~ t2t8!. ~11!

The relation between the parametersa1 , b1 anda, b, andD
is

a52a/D21

and

b52b/D. ~12!

The apparent way to explain the appearance of a multipl
tive stochastic terme(t) in Eq. ~10! is to ascribe it to the
spatial diffusion and fluctuating background created by
moving small amplitude excitations~radiation and low am-
plitude local excitations!. There is, however, noa priori rea-
son why the noise should be white; indeed, the remain
very small but systematic deviation from log-normal dist
bution in the tail region~see Fig. 2! may indicate some color
From the numerics we know thata is intrinsic to the system
in that it is unchanged when the parameters of the system
changed, indicating that thea and the noise varianceD are
intrinsic to the system. So, starting from a random state,
system generates a stochastic background with a spe
strength. Furthermore, we know thatb is proportional toN,
indicating that the termbx2 arises from the nonlinearity o
the system.

The nonlinear stochastic differential equation~9! can also
describe a bimolecular chemical reaction@34#. In this con-
nection it is interesting to observe that a similar trimolecu
reaction would lead to Eq.~9! with the termbx2 replaced
with bx3, which in turn leads to the distributionp2 . As we
have seenp2 approximates the numerical data much wor
than p1 . It is difficult to interpret this fact in detail in our
context, but it suggests that the distribution is a result of
coexisting interaction of intrinsic localized excitations a
radiation via the nonlinear term in Eq.~1!.

In conclusion, we have numerically studied creation a
annihilation of intrinsic localized excitations in a nonint
grable Hamiltonian system, starting from a random init
condition. The observed continuous creation and annihila
process results in a characteristic near-log-normal distr
tion of the amplitudes of the localized states. We furth
observed that the phenomena can be described by a nonl
stochastic differential equation with multiplicative whit
noise. In contrast to other studies, the system studied in
present paper is Hamiltonian, without any external pertur
tions. The system is, however, nonintegrable and con
quently possesses a finite number conserved quantities
integrable system would have exhibited recurring behav
under the applied conditions. The prevalence of near-l
normal distributions in nonlinear, nonintegrable systems
important for characterizing mesoscale complexity, and e
dently is worthy of further study and analysis.

This work was performed under the auspices of the DO
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